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“George Keith Batchelor (March 8, 1920 - March 30, 2000) was an Australian applied
mathematician and fluid dynamicist. He was for many years the Professor of Applied

o Mathematics in the University of Cambridge, and was founding head of the Department
a0 of Applied Mathematics and Theoretical Physics (DAMTP). In 1956 he founded the

) oy j influential Journal of Fluid Mechanics which he edited for some forty years.
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As an applied mathematician (and for some years at Cambridge a co-worker with Sir
Geoffrey Taylor in the field of turbulent flow), he was a keen advocate of the need for
physical understanding and sound experimental basis.

His An Introduction to Fluid Dynamics (CUP, 1967) is still considered a classic of the
subject...”

» 1940’s: research on turbulence under G. |. Taylor; small scale
temperature fluctuations in turbulence, on the dispersion of smoke
plumes in a turbulent atmosphere.

» 1960's: research on the statistical distribution of small particles
and bubbles as they settle and disperse in liquids and gases -
related to problems in chemical engineering and rain in clouds.

From obituaryin The Independent by J. Hunt




Stress in a solution of elongated particles  I!lii

Bulk stress due to presence of rod-like particles:
it
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*traction: g, is the force per unit area

When the bulk motion causes all particles to align,
we can write the approximate relation:
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Thus the bulk stress in the fluid is:
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Bulk Viscous Deviatoric part of particle stress
pressure stress

Specific viscosity of rods in bulk uniaxial extension flow

Normal stress difference
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Viscous normal stress difference

Stress in a dilute suspension Mir

(lo ~H o Particles not affected by each other
(‘dilute”)

e Particles align with extensional flow

¢ Neglect Brownian motion (Pe—x/De—x)

e Steady state flow
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G(s) is non-dimensional function of distance along particle and is found
approximately from slender body theory in Stokes flow (Batchelor, 1970b).
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e Stress due to particles significant for o ~ 1
e Effective particle volume ~ /* (and not the actual volume of the particle!)

This is the volume that a rod can sweep out around its centre.
e a ~ 1 possible, i.e. larger stress than for Newtonian fluid, but not within the

limits of a dilute suspension - c.f. Einstein’s formula for spheres
i.e. for o € 1 particle stress is small compared with bulk viscous stress.

Experiments show dilute solutions until around 30 times this estimate (Mori et a/ 1982)




Semi-dilute suspension (close particles) Mir

* Distance between particles, i<</
e Particles align with extensional flow
¢ Neglect Brownian motion

e Steady state flow

30 o r @

x-y plane

e Spatial velocity gradients @
important in z-y plane 2
o Statistically homogeneous @
o All fluid points are distance
r</ from a rod 17
¢ Disturbance is radially symmetric
¢ Velocity is zero on radius r=h

z-y plane

— ‘Cell’ model of the flow

For semi-dilute solution <, _ r ., B
force per unit length: =6 = Ondj1/ten 3_172‘15§}'&’/_Ro

cf. result for dilute solution which has log(2//R) in denominator

Stress due to particles in extensional flow  1!lii

Stress per particle T
in unit volume
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This ratio exceeds 700 when ¢ = 0-01 and I/R, = 10%
i.e. Trouton ratio = 2100, for 1% volume solution in
steady state uniaxial extension
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Comparison with experimental data

Rigid rods:
Mewis and Metzner 1974 JFM

Data are presented for the 1 flow of 0-1-1-0%,
of fibres by volume. The aspect ratio of the fibres was varied from 280 to 1260.
The observed stress levels were between one and two orders of magnitude greater
than in shearing flow, in agreement with the a priori predictions of Batchelor
(1971).

Suspensions of fibres subjected to extensional deformations

Increasing volume fraction
and aspect ratio of fibres
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Flexible polmers:
James and Sridar 1995 J. Rheol.
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Further results on behaviour of spheroids

e Batchelor’s result superceded by
results of Shagfeh and Fredrickson
(1990) - improved screening analysis

e For Brownian solution of spheroidal
particles in extension, viscosity
decreases by 1.25 (Brenner, 1974)

¢ Spheroidal particles in shear flow
roatate - Jeffery Orbits (Jeffery,
1922), period:
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e Normal stress differences in steady
shearing flow are small (Hinch and
Leal, 1971)

e Various results for shear viscosity
(Petrie, 1999) due to dilute
particles; n/ns~ 1+ 2¢ + H.O.T.
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Stress due to a particle Mir

Derive particle stress from rate of dissipation.
The rate at which forces at the boundary 4, do work is:
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Equivalent homogeneous
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Suspending fluid plus stress due to particle o’
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Re-writing for the stress:
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This derivation from pp. 251-252 “An Introduction to Fluid Dynamics” Batchelor (1969).
Also see Landau and Lifchitz (1959); even more detailed in Batchelor (1970a).

. [l | B |
Slender-bodied particles i
Slender-body theory for particles of Slender body theory for Stokes flow:
arbitrary cross-section in Stokes flow disturbance is approximately that due to
By G. K. BATCHELOR a line distribution of Stokeslets.
J. Fluid Mech. (1970), vol. 44, part 3, pp. 419-440 / R
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Flow due to a Stokeslet of force F at the origin:
F (8, ax,
AX) = 4 (4 T
7,(x) Sw(lxl + fX[,,)
NB. Disturbance velocity equivalent to Stokes
flow at large distances due to a sphere.
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Perimeter=2nR,
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Force on a small slender body falling
across principal axis is 2 times force F, = 2meuU,, F, = 4meuU; (i =2o0r3)
when falling along principal axis.
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G(s) = fog (b) i.e. F~¢~G(s)




