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Jacques Salomon Hadamard (1865 - 1963)

French mathematician,
École Normale Supérieure, Paris
Best known for proof of prime number theorem
Member of French Academy of Sciences

Other achievements:
- Hadamard transform (aka Walsh transform), Hadamard
matrix (aka Hadamard gate, used in quantum computers)
- Introduced idea of well-posed problems in the theory of
PDE
- Book on Creativity: “The Mathematician's Mind: The
Psychology of Invention in the Mathematical Field”
(Dover, 1954)
-Calculus of variations

-Brother-in-law of A. Dreyfus (Dreyfus-Affair, a highly
divisive political and legal scandal of the French 3rd
republic)

wikipedia.org / academie-sciences.fr
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Witolt Rybczynski

-Rybczynski’s paper on drops in creeping motion appeared in
1911 in the international bulletin of the Polish Academy of
Sciences.
-The article was communicated to the academy by Smoluchowski

?
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Problem statement
Drop translating in a second immiscible liquid

(under the action of gravity / body force)

Spherical coordinate system (r, θ, φ) 
with origin in the center of the drop

Axisymmetry: problem in 2D (r,θ) plane

Steady creeping flow: Re << 1

Modification of Stokes’ creeping motion
problem for a solid sphere to liquid spheres

Stokes (1851):
Drag & settling velocity of a solid sphere
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2D Creeping flow: use two stream functions, one for each phase: 

Hadamard/Rybczynski approach
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Biharmonic eq. 

With operator (“     in spherical coordinates”)
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Velocities in terms of ψ:

(see tables in Dynamics of Polymeric Liquids, p25)
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Hadamard/Rybczynski approach

(see DPL, p27)
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tangential stress balance
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B.C. at r = a

normal stress balance
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Use B.C. far away and on drop to eliminate 4 of the 8 constants:
Stream functions inside and outside become
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Plug these into the B.C. at the interface:

! 

A

a
+ Ba = ˆ C a

2
+ ˆ D a

4

! 

A

a
2
" B = "2( ˆ C a + 2 ˆ D a

3
)

(I, II: continuous velocities at r=a)
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Boundary conditions
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Translational motion (velocity V) + additional motion M, 
where M is tangential on the surface r=a
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from: V=v

Boundary conditions

Pressure from eqs.
of motion 
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After some algebra:
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Streamlines:

(revolve around a circle in the 
equator plane with radius
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Translation velocity & streamlines

http://www.bubbleology.com/Hydrodynamics.html
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Axisymmetric creeping flows in spherical coordinates

For any problem with the stream function ψ in the general form 

the force exerted by the fluid on an arbitrary, axisymmetric 
body with its center of mass at |x|=0 is generally given by

where Vc and lc are the characteristic velocity length scales
and z is the direction of the symmetry axis.

! 

" = [A
n
r
n+3

+ B
n
r
n+1

+ C
n
r
2#n

+ D
n
r
#n
]Q

n

n=1

$

%

! 

F
z

= 4"µV
c
l
c
C
1

Here: 

LG Leal, ‘Laminar Flow and Convective Transport Processes’, p164 & 209
Deen, Analysis of Transport Phenomena! 
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λ = viscosity ratio innter/outer liquid
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! Drag on a solid sphere exceeds drag on a 
spherical bubble by only a factor of 3/2!

Drag on a drop / Viscosity of Dilute Emulsions
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ηr: relative viscosity
ηs: solvent viscosity
λ = viscosity ratio inner/outer
φ = volume fraction

Viscosity of a 
dilute emulsion

Taylor GI (1932), Proc R Soc Lond A 138:41
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Taylor & Acrivos, JFM 1963 
- free surface (not spherical)
- must specify kinematic condition for interface

Some examples for later modification: deformation of drop…
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Drag coefficient at low but
non-zero Re

… internal circulation … 
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…Drops with surfactants
Adsorption-controlled

Marangoni flow
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Surface tension gradients appear
In the B.C.
need surface equation of state
e.g. Frumkin, Szyckowski
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‘equidimensional eq.’, has solutions of form
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Choice of stream function

(see chapter ‘Drag on a sphere’ in DPL)


