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Colloids as big atoms
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Particles suspended in a liquid phase

 Driven by Brownian motion  

Typical size R ≤ 10µm

Exquisite precision: 3% poly-dispersity

 Interactions at stake

• Electrostatic interactions

• Van der Waals interactions

Screening of electrostatic interactions

colloids

salt

𝑉(𝑟) ∝
𝑒−𝐾𝑟

𝑟

Debye length:

𝐾−1 ∝ 1/ [𝑠𝑎𝑙𝑡]

Suppress Van der Waals interactions

→ refractive index matching 

Example: 

Poly-methylmetacrylate (PMMA) spheres

coated with poly-hydroxystearic acid (PHSA)

 Model Hard Spheres
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Hard Spheres: Phase diagram
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Increasing f
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Control parameter: volume fraction 𝜙

Main results:

• 𝜙 < 0.49 – fluid behavior

• 0.49 < 𝜙 <0.54 – fluid crystal coexistence

• 0.54 < 𝜙 <0.58 – crystal

• 𝜙 > 0.58 – glass 

Pusey & van Megen, Nature 320, 340-342 (1986)

Weeks, book chapter in Statistical Physics of Complex Fluids, pp. 2-87, (Tohoku University Press, Sendai, Japan, 2007).

What about charged colloids?
“The range of 𝜙 over which crystallization is observed 

is much greater than that for hard shperes”
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Confocal & diffraction microscopy

Confocal microscopy

Laser Diffraction Microscopy

- Microscope with shallow depth of field

- Allow to follow individual particles 

- Rebuild a 3D picture of the sample

- Characterize crystalline zone

- Determine the structure and dimension 

of the crystalline zone

- Detect structural defaults (=dislocations)

Semwogerere & Weeks, Encyclopedia of Biomaterials and Biomedical Engineering (2005)

Three-dimensional reconstruction of a

series of 2D images of PMMA spheres

suspended in a cyclohexyl-bromide and

decalin solution



Deffects in crystalline structures

Visualization with Laser Diffraction Microscopy

b,c : lattice constant d0 = 1.61µm

d,e: lattice constant d0 = 1,63µm

𝑘0 incident wave vector

𝑘 watching directions vector

 𝑞 = 𝑘- 𝑘0



Glasses and Gels

Role of attractive interactions on the phase diagram

𝑈 ∶ 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ
𝜉 ∶ 𝑟𝑎𝑛𝑔𝑒 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑘𝑇

𝑈

𝜙

Sciortino Nature Materials 1, 1-3 (2002) 6



Properties of glasses at rest
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- Similarities with liquid : viscous behavior, disorder

- Main difference with liquids: long relaxation times & dynamical heterogeneities

Observation of one slice of a bulk colloidal glass using confocal miscroscopy

 Volume fraction: 𝝓 = 𝟎. 𝟓
 Thickness of the slice: 2.5 µm (~1 layer of particles)

 Black arrows = direction of motion for particles with displacement > 0.2 mm during 600s



Glasses undear shear
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 Map of cumulative strain

under external shear

 Blue arrows indicate Shear

Transformation Zones that

have been formed in the

time interval before the

frame shown

 Image showing only the

particles which have

experienced a strain larger

than a threshold of 0.025 .

Strain threshold 0.025



Gels 

 Conditions to form a Gel

Low volume fractions

Attractive interactions

𝑘𝑇

𝑈

𝜙



Kinetics of gels formation 

Diffusion-Limited 

Cluster Aggregation 

(DLCA)

Reaction-limited 

cluster aggregation

(RLCA) 

Fractal dimension : 2.3Fractal dimension : 1.8



Robust scenario – exp. & simulations



Analogy with spinodal

decomposition

- Gelation = purely kinetic process

- Surprising connection with thermodynamic phase separation, i.e. 

the spinodal decomposition, which is observed in a wide range of 

liquid/gas system (split into two phases to minimize free energy)

Different data series 

correspond to 

measurements at 

different 

times during the 

formation of the gels 

(DLCA)

𝑞 = 2𝑘|sin(
𝜃

2
)|



Jamming phase transition
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- Reversible non equilibrium solid/liquid transition under external shear

- Set of parameters 
𝑘𝑇

𝑈
,
𝜎

𝜎0
𝑎𝑛𝑑

1

𝜙

jamming phase diagram for attractive colloidal particles



Gel linear rheology

100 µm

Attractive soot particles in a light 

mineral oil – reversible gelation

a: scaling factor for the modulus

b: scaling factor for the frequency

µ: viscosity of the solvent

The fact that data scale so well implies that there is a strong 

similarity in the structures of the networks that form at different 𝜙.



Take home messages

15

Conclusions

• Colloidal particles can interact in three different manners: as crystals, glasses and gels.

Each case is characterized by specific properties such as defects, dynamic

heterogeneities and a universal frequency-dependent linear viscoelasticity

• Colloids are a model system to study basic physics with direct microscopic visualization

Outlook
• Link between glass and gels:

Winter, Glass Transition as the Inverse of Gelation ACS macromol 2013

• Scaling properties of linear viscoelasticity in gels:
Shi et al. Scaling Behavior of the Elastic Properties of Colloidal Gels, Phys. Rev. A 1990

Bremer et al. On the fractal nature of the structure of acid casein gels, Colloids & Surfaces A 1990

• Non-linear rheology of gels:

Van Vliet, Rheology and Fracture Mechanics of Foods, Chapter 13 - Gels

Groot et al., Molecular Theory of the Yield Behavior of a Polymer Gel, J. Chem Phys. 1996

• Polymer Networks:
Leibler et al., Dynamics of Reversible Networks Macromolecules 1991

• Microrheology in polymer gels

Larsen & Furst, Microrheology of the Liquid/Solid Transition during gelation, PRL 2008

Lee et al. Combined Passive & Active Rheology of Protein Layer…, Langmuir 2009


