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Recap of Simple Reptation Theory
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Entangled polymer melt
Chains are all over the place in each others 
pervaded volume
Strands cannot tell which chain they belong to –
excluded volume interactions are screened and 
ideal chain statistics are obeyed

Focus on one chain

Toplogical constraints due to other chains 
can be modeled as a confining tube.
Confining tube diameter = a

Strand with fluctuations of the order 
of a is an entanglement strand ea b N

a

Tube length
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N
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N
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Chain diffuses along tube by 
Rouse motion c

kT
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Sticky reptation
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Free (open) sticker

Associated (closed) 
sticker

Each polymer chain has N monomers.

There are also S stickers per chain.
Stickers – potential sites for a reversible

cross-link with other stickers

Microscopic parameters of a sticker
1. Fraction of stickers that are closed
2. Lifetime of the closed state

p



Assume thermal equilibrium.
Open and closed stickers must obey detailed balance.

Fraction of open stickers =  1 p

 
 

1

1

11
0

pd p p
cSp cS

dt p




 

 
     

 

Lifetime of open stickers = 
1

Rate of change 
of concentration 
of closed stickers
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Short time-scales
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Average length of strand between stickers

1
s

N
N

S




For times shorter than 
the gel behaves like a permanent network.



c

d

i
The chain cannot reptate along its tube because 
stored loops cannot traverse the closed stickers
c, i and d

t 

Segments ci and id simply undergo Rouse motion 
between fixed ends.
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Sticker i opens
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c

d

i

The whole strand cd with 2Ns monomers 
can now undergo Rouse motion.

Sticker i can now diffuse along the tube.

 2R st NFor

Sticker i is “unaware” of the cross-links at c and d.

Curvilinear displacement along tube

 
1/2

2 2

e

e

t
l t b N



 
  

 

Subdiffusive Rouse motion 
of entanglement strand

 
2

2
2 s

R s e

e

N
N

N
 
  
   
   

 2R st NFor

Sticker i becomes “aware” of the constraints. The 
displacement freezes at that point.

     2 2 22 2R s sl t l N b N   

t 
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Sticker f forms
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 
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N
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  
   
   

1t 

 2R sN

 2l t

t

The new cross-link can form either before 
or after  2R sN

c

d

f

Formation of new crosslink f freezes the 
displacement until that point.
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Sticker f forms
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1t 
c

d

f

Formation of new crosslink f freezes the 
displacement until that point.

Strands cf and fd now relax over a time
provided c and d remain closed. R sN

After relaxation, the center of mass of the 
strand cd has moved by

 1

2
cd

l 
 

Thus the chain has undergone an effective displacement along the tube although it 
cannot reptate as a whole in the normal fashion – this is sticky reptation.

The center of mass of the whole chain has 
been displaced by

   1 1

1

2

2 1 1

l l

S S

 
  

 

Subscript 1 
denotes one 
open sticker
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The General Case – The k-step
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A k-strand has k 
adjacent open stickers 

between two closed 
stickers

Mean square curvilinear displacement is therefore

 2

2 1/2

2

1 s k R

k
k

e k R
e

b k N

l
b N

 


 



  


     
 

A k-strand “dies” when one of its k open stickers close.

1
k

k


  Longer strands live for shorter 

durations but have larger Rouse times.

At what k does a strand live long enough to 
just relax fully?

 1
max

max

1R sk N
k


    

k R 
maxk kis equivalent to

Longer strands than k(max) die partly relaxed.
Shorter strands than k(max) die fully relaxed.
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The General Case – The k-step
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Finding the effective displacement of the whole chain

max

max
max

1
or

1 1

12
or

1

k R

k k

k R

k
k k

S
l

k
k k

S

 

 


  

  
  

 

½ because ends are fixed.

All stickers 
participate.

Only k(max) stickers 
participate.

Probability of finding a series of k open stickers with 2 closed ends

   21 1
k

kp S k p p   
S open positions

Choose a block of (k + 2) positions

k
k

k

p



Frequency of a k-step
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Sum over all possible k’s
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Total curvilinear displacement of the chain over a time T
2

2 2

1

S

k k

k

T E F




    

Fully free chainsEnd strands

In end strands, Δ
depends on which 
sticker closes

End strands

1 2

3

x

k

Suppose the x-th sticker closed from the end.
This creates one fixed side and one free side.

1
2 klInstead of the           before, we would have:

 

 

1
2 1 1

1 2 1

k k

k

l x l k x x k
l

k k

    


 

Averaging

All 1 ≤ x ≤ k are 
equally probable

 1

1 1 3

2 1 4

k

k k

x

x k
l l

k k

 





For fully free chains, we simply have 1 kl
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Sum over all possible k’s
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Total curvilinear displacement of the chain over a time T

 
2 1

2
2 2 end end 2

1 1

S S

k k k k S S

k k

T T T  
 

 

       

Compute curvilinear and 3D self diffusion coefficients:
2

cD
T




Further computations are similar to simple reptation theory.

2

self

d

R
D

T


2 2R Nb
2

1
d

c e

N
T a

D N

 
  

 

Tube length squared

Three contributions to the self diffusion coefficient
2 1

end

self

1 1

S S

k k S

k k

D D D D
 

 

   
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Relative contributions of the three terms
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End terms Free term

Dk terms

Dk terms dominate when p is large.

Dk terms dominate when N and S are large.

Dk terms

p = 0.2

0.4

0.6

0.8

2 1
end

1

self

1

S

S

k

k

S

k

k

D D DD








  

For large p, k < k(max) terms dominate 
in the sum 2

self 2 2

9 12
1

2

a
D

S p p

 
   

 

What happens if p = 1?
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2

self

d

Nb
T

D


Stress Relaxation
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log ( )G t

log t

0

e
0

dT

1
2



( )
( )

t
G t






No effect of stickers

1

1

e s

p
G cRT

N N

 
  

 

StickersEntanglements

Stickers act like permanent 
cross-links



No effect of stickers except 
to slow down reptation

2

1

e

G cRT
N

 
  

 
Only entanglements

2

2

2

9 121
d

e

N S
T

N
p p

 
  

  

1.5
2

2

2

9 121
d

e

N S
T

N
p p

 
  

  

To correct for tube 
length fluctuations 

and constraint release
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Urazole-modified polybutadiene
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Reversible H-bonding Urazole group



Dynamics of Reversible Networks
Ludwik Leibler, Michael Rubinstein and Ralph H. Colby
Macromolecules 24, 4701–4740 (1991)

15

'G "G

 

2
0.88

0.66

1

0.63

0.55

Unmodified PB50-0
1% modified PB50-1
2% modified PB50-2

48500nM  1.06w

n

M

M


0

1

dT

 
 
 

1



 
 
 

1

dT

 
 
 

Urazole-modified polybutadiene
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Urazole-modified polybutadiene

1.5
2

2
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2

9 121
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e

s

s e

N S
T

N
p p

NN p

N N





 
  

  

    
    

   

 
3.5

expd e

e

N
T Sp

N

 

  
 

Gonzalez model
All stickers must open for reptation
to occur

Sticky reptation
Parts of the chain can relax if a few 
consecutive stickers open
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Urazole-modified polybutadiene

 
3.5

Gonzalez

3.5
2

LRC

exp

1

(1 )

d e

e

d e S

S e

N
T Sp

N

Nb N
T

D N p





 
  

 

 
   

 

For Sp << 1 both models agree

as both expressions Taylor expand 
to

  
3.5

2
1e

e

N
Sp O Sp

N

 

  
 


